Schrodingers equation

Schrodingers equation is a linear partial differential equation that describes the wave function or state function of a quantum-mechanical system.  It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In classical mechanicsNewton’s second law (F = ma)  is used to make a mathematical prediction as to what path a given physical system will take over time following a set of known initial conditions. Solving this equation gives the position and the momentum of the physical system as a function of the external force {\displaystyle \mathbf {F} } on the system. Those two parameters are sufficient to describe its state at each time instant. In quantum mechanics, the analogue of Newton’s law is Schrödinger’s equation.

The concept of a wave function is a fundamental postulate of quantum mechanics; the wave function defines the state of the system at each spatial position, and time. Using these postulates, Schrödinger’s equation can be derived from the fact that the time-evolution operator must be unitary, and must therefore be generated by the exponential of a self-adjoint operator, which is the quantum Hamiltonian. This derivation is explained below.

In the Copenhagen interpretation of quantum mechanics, the wave function is the most complete description that can be given of a physical system. Solutions to Schrödinger’s equation describe not only molecularatomic, and subatomic systems, but also macroscopic systems, possibly even the whole universe.  Schrödinger’s equation is central to all applications of quantum mechanics, including quantum field theory, which combines special relativity with quantum mechanics. Theories of quantum gravity, such as string theory, also do not modify Schrödinger’s equation.

The Schrödinger equation is not the only way to study quantum mechanical systems and make predictions. The other formulations of quantum mechanics include matrix mechanics, introduced by Werner Heisenberg, and the path integral formulation, developed chiefly by Richard FeynmanPaul Dirac incorporated matrix mechanics and the Schrödinger equation into a single formulation.

Source: Wikipedia

The Aquarius Bus

The Aquarius Bus

A metaphysical emporium.

Share on email
Email
Share on facebook
Facebook
Share on linkedin
LinkedIn
Share on pinterest
Pinterest
Share on reddit
Reddit
Share on telegram
Telegram
Share on tumblr
Tumblr
Share on twitter
Twitter
Share on whatsapp
WhatsApp

You may be interested in...

The God Particle-in 120 seconds
Artificial Intelligence

The God Particle-in 120 seconds

The God Particle-in 120 seconds “…these particles are just packages of energy of some kind of field,” the 84-year-old said. “And the feature [that] distinguishes this kind of theory, which leads to this kind of symmetry breaking, is the existence

Read More »
will computers become conscious?
Artificial Intelligence

Will private computers become conscious?

Will computers become conscious? Basically, a quip in Tellegen’s Theorem says “AI is whatever hasn’t been done yet.” As such, optical character recognition is frequently excluded from things considered to be AI, having become a routine technology. Modern machine learning

Read More »

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top